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Abstract

The fate of scientific hypotheses often relies on the ability of a computational model to

explain the data, quantified in modern statistical approaches by the likelihood function. The

log-likelihood is the key element for parameter estimation and model evaluation. However,

the log-likelihood of complex models in fields such as computational biology and neurosci-

ence is often intractable to compute analytically or numerically. In those cases, researchers

can often only estimate the log-likelihood by comparing observed data with synthetic obser-

vations generated by model simulations. Standard techniques to approximate the likelihood

via simulation either use summary statistics of the data or are at risk of producing substantial

biases in the estimate. Here, we explore another method, inverse binomial sampling (IBS),

which can estimate the log-likelihood of an entire data set efficiently and without bias. For

each observation, IBS draws samples from the simulator model until one matches the

observation. The log-likelihood estimate is then a function of the number of samples drawn.

The variance of this estimator is uniformly bounded, achieves the minimum variance for an

unbiased estimator, and we can compute calibrated estimates of the variance. We provide

theoretical arguments in favor of IBS and an empirical assessment of the method for maxi-

mum-likelihood estimation with simulation-based models. As case studies, we take three

model-fitting problems of increasing complexity from computational and cognitive neurosci-

ence. In all problems, IBS generally produces lower error in the estimated parameters and

maximum log-likelihood values than alternative sampling methods with the same average

number of samples. Our results demonstrate the potential of IBS as a practical, robust,

and easy to implement method for log-likelihood evaluation when exact techniques are not

available.

Author summary

Researchers often validate scientific hypotheses by comparing data with the predictions

of a mathematical or computational model. This comparison can be quantified by the
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‘log-likelihood’, a number that captures how well the model explains the data. However,

for complex models common in neuroscience and computational biology, obtaining

exact formulas for the log-likelihood can be difficult. Instead, the log-likelihood is usu-

ally approximated by simulating synthetic observations from the model (‘sampling’),

and seeing how often the simulated data match the actual observations. To reach correct

scientific conclusions, it is crucial that the log-likelihood estimates produced by such

sampling methods are accurate (unbiased). Here, we introduce inverse binomial sam-

pling (IBS), a method which differs from traditional approaches in that the number of

samples drawn from the model is not fixed, but adaptively adjusted in a simple way. For

each data point, IBS samples from the model until it matches the observation. We show

that IBS is unbiased and has other desirable statistical properties, both theoretically and

via empirical validation on three case studies from computational and cognitive neuro-

science. Across all examples, IBS outperforms fixed sampling methods, demonstrating

the utility of IBS as a practical, robust, and easy to implement method for log-likelihood

evaluation.

This is a PLOS Computational BiologyMethods paper.

Introduction

The likelihood function is one of the most important mathematical objects for modern statisti-

cal inference. Briefly, the likelihood function measures how well a model with a given set of

parameters can explain an observed data set. For a data set of discrete observations, the likeli-

hood has the intuitive interpretation of the probability that a random sample generated from

the model matches the data, for a given setting of the model parameters.

In many scientific disciplines, such as computational neuroscience and cognitive science,

computational models are used to give a precise quantitative form to scientific hypotheses and

theories. Statistical inference then plays at least two fundamental roles for scientific discovery.

First, our goal may be parameter estimation for a model of interest. Parameter values may have

a significance in themselves, for example we may be looking for differences in parameters

between distinct experimental conditions in a clinical or behavioral study. Second, we may be

considering a number of competing scientific hypotheses, instantiated by different models,

and we want to evaluate which model ‘best’ captures the data according to some criteria, such

as explanation (what evidence the data provide in favor of each model?) and prediction (which

model best predicts new observations?).

Crucially, the likelihood function is a key element for both parameter estimation and model

evaluation. A principled method to find best-fitting model parameters for a given data set is

maximum-likelihood estimation (MLE), which entails optimizing the likelihood function over

the parameter space [1]. Other common parameter estimation methods, such as maximum-a-

posteriori (MAP) estimation or full or approximate Bayesian inference of posterior distribu-

tions, still involve the likelihood function [2]. Moreover, almost all model comparison metrics

commonly used for scientific model evaluation are based on likelihood computations, from

predictive metrics such as Akaike’s information criterion (AIC; [3]), the deviance information

criterion (DIC; [4]), the widely applicable information criterion (WAIC; [5]), leave-one-out

cross-validation [6]; to evidence-based metrics such as the marginal likelihood [7] and (loose)
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approximations thereof, such as the Bayesian information criterion (BIC; [8]) or the Laplace

approximation [7].

However, many complex computational models, such as those developed in computational

biology [9–11], neuroscience [12, 13] and cognitive science [14], take the form of a generative

model or simulator, that is an algorithm which given some context information and parameter

settings returns one or more simulated observations (a synthetic data set). In those cases, the

likelihood is often impossible to calculate analytically, and even when the likelihood might be

available in theory, the numerical calculations needed to obtain it might be overwhelmingly

expensive and intractable in practice. In such situations, the only thing one can do is to run the

model to simulate observations (‘samples’). In the absence of a likelihood function, common

approaches to ‘likelihood-free inference’ generally try and match summary statistics of the

data with summary statistics of simulated observations [15, 16].

In this paper, we ask instead the question of whether we can use samples from a simulator

model to directly estimate the likelihood of the full data set, without recurring to summary sta-

tistics, in a ‘correct’ and ‘efficient’ manner, for some specific definition of these terms. The

answer is yes, as long as we use the right sampling method.
In brief, a sampling method consists of a ‘sampling policy’ (a rule that determines how long

to keep drawing samples for) and an ‘estimator’ which converts the samples to a real-valued

number. To estimate the likelihood of a single observation (e.g., the response of a participant

on a single trial of a behavioral experiment), the most obvious sampling policy is to draw a

fixed amount of samples from the simulator model, and the simplest estimator is the fraction

of samples that match the observation (or is ‘close enough’ to it, for continuous observations).

However, most basic applications, such as computing the likelihood of multiple observations,

require one to estimate the logarithm of the likelihood, or log-likelihood (see Methods for the

underlying technical reasons). The ‘fixed sampling’ method described above cannot provide

unbiased estimates for the log-likelihood (see Methods). Such bias vanishes in the asymptotic

limit of infinite samples, but drawing samples from the model can be computationally expen-

sive, especially if the simulator model is complex. In practice, the bias introduced by any fixed

sampling method can translate to considerable biases in estimates of model parameters, or

even reverse the outcome of model comparison analyses. In other words, using poor sampling

methods can cause researchers to draw conclusions about scientific hypotheses which are not

supported by their data.

In this work, we introduce inverse binomial sampling (IBS) as a powerful and simple tech-

nique for correctly and efficiently estimating log-likelihoods of simulator-based models.

Crucially, IBS is a sampling method that provides uniformly unbiased estimates of the log-like-

lihood [17, 18] and calibrated estimates of their variance, which is also uniformly bounded.

We note that the problem of estimating functions f(p) from observations of a Bernoulli dis-

tribution with parameter p has been studied for mostly theoretical reasons in the mid-20th

century, with major contributions represented by [17–21]. These works have largely focused

on deriving the set of functions f(p) for which an unbiased estimate exists, and demonstrating

that for those functions, the inverse sampling policy (see Methods) is in a precise sense ‘effi-

cient’. Our main contribution here is to demonstrate that inverse binomial sampling provides

a practically and theoretically efficient solution for a common problem in computational

modeling; namely likelihood-free inference of complex models. To back up our claims, we

provide theoretical arguments for the efficiency of IBS and a practical demonstration of its

value for log-likelihood estimation and fitting of simulation-based models, in particular those

used in computational cognitive science. We note that [22] had previously proposed inverse

binomial sampling as a method for likelihood-free inference for certain econometric models,
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but did not present an empirical assessment of the quality of the estimation and to our knowl-

edge has not led to further adoption of IBS.

The paper is structured as follows. In the Methods, after setting the stage with useful “Defi-

nitions and notation”, we describe more in detail the issues with the fixed sampling method

and why they cannot be fixed (“Why fixed sampling fails”). We then present a series of argu-

ments for why IBS solves these issues, and in particular why being unbiased here is of particu-

lar relevance (“Is inverse binomial sampling really better?”). In the Results, we present an

empirical comparison of IBS and fixed sampling in the setting of maximum-likelihood estima-

tion. As case studies, we take three model-fitting problems of increasing complexity from

computational cognitive science: an ‘orientation discrimination’ task, a ‘change localization’

task, and a complex sequential decision making task. In all problems, IBS generally produces

lower error in the estimated parameters than fixed sampling with the same average number of

samples. IBS also returns solutions that are very close in value to the true maximum log-likeli-

hood. We conclude by discussing further applications and extensions of IBS in the Discussion.

Our theoretical analyses and empirical results demonstrate the potential of IBS as a practical,

robust, and easy-to-implement method for log-likelihood evaluation when exact or numerical

solutions are unavailable.

Implementations of IBS with tutorials and examples are available at the following link:

https://github.com/lacerbi/ibs.

Methods

Definitions and notation

The two fundamental ingredients to run IBS are:

1. A data set D ¼ fðsi; riÞg
N
i¼1

consisting of N ‘trials’ characterized by ‘stimuli’ si and discrete
‘responses’ ri.

2. A generative model g for the data (also known as a ‘simulator’): a stochastic function that

takes as input a stimulus s and a parameter vector θ (and possibly other information) and

outputs a response r.

In this section we expand on and provide motivations for the above assumptions, and intro-

duce related definitions and notation used in the rest of the paper.

Here and in the following, for ease of reference, we use the language of behavioral and cog-

nitive modeling (e.g., ‘trial’ for data points, ‘stimulus’ for independent or contextual variables,

‘response’ for observations or outcomes), but the statistical techniques that we discuss in the

paper apply to any model and data set from any domain as long as they satisfy the fundamental

assumption of IBS delineated above.

The likelihood function. We assume that we want to model a data set D ¼ fðsi; riÞg
N
i¼1

consisting of N ‘trials’ (data points), where

• si is the stimulus (i.e., the experimental context, or independent variable) presented on the i-
th trial; typically, si is a scalar or vector of discrete or continuous variables (more generally,

there are no restrictions on what si can be as long as the simulator can accept it as input);

• ri is the response (i.e., the experimental observations, outcomes, or dependent variables) mea-

sured on the i-th trial; ri can be a scalar or vector, but crucially we assume it takes discrete
values.

The requirement that ri be discrete will be discussed below.
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Given a data set D, and a model parametrized by parameter vector θ, we can write the likeli-
hood function for the responses given the stimuli and model parameters as

Prðfrig
N
i¼1
jfsig

N
i¼1
; θÞ ¼

YN

i¼1

Prðrijr1; . . . ; ri� 1; s1; . . . ; sN ; θÞ

¼
YN

i¼1

Prðrijr1; . . . ; ri� 1; s1; . . . ; si; θÞ;

ð1Þ

where the first line follows from the chain rule of probability, and holds in general, whereas in

the second step we applied the reasonable ‘causal’ (or ‘no-time-travel’) assumption that the

response at the i-th trial is not influenced by future stimuli. We also used the causality assump-

tion that current responses are not influenced by future responses to choose a specific order to

apply the chain rule in the first line.

Note that Eq 1 assumes that the researcher is not interested in statistically modeling the sti-

muli, which are taken to be given (i.e., on the right-hand side of the conditional probability).

This choice is without loss of generality, as any variable of statistical interest can always be rela-

beled and become an element of the ‘response’ vector. For compactness, from now on we will

denote Prðfrig
N
i¼1
jfsig

N
i¼1
; θÞ � PrðDjθÞ, in a slight abuse of notation.

Eq 1 describes the most general class of models, in which the response in the current trial

might be influenced by the history of both previous stimuli and previous responses. Many

models commonly make a stronger conditional independence assumption between trials, such

that the response on the current trial only depends on the current stimulus. Under this stron-

ger assumption, the likelihood takes a simpler form,

PrðDjθÞ ¼
YN

i¼1

Prðrijsi; θÞ: ð2Þ

While Eq 2 is simpler, it still includes a wide variety of models. For example, note that time-

dependence can be easily included in the model by incorporating time into the ‘stimulus’ s,
and including time-dependent parameters explicitly in the model specification. In the rest of

this work, for simplicity we consider models that make conditional independence assumptions

as in Eq 2, but our techniques apply in general also for likelihoods as per Eq 1.

Given that the likelihood of the i-th trial can be directly interpreted as the probability of

observing response ri in the i-th trial (conditioned on everything else), we denote such quantity

with pi 2 [0, 1]. The value pi is a function of θ, depends on the current stimulus and response,

and may or may not depend on previous stimuli or responses.

With this notation, we can simply write the likelihood as

PrðDjθÞ ¼
YN

i¼1

pi: ð3Þ

Finally, we note that it is common practice to work with the logarithm of the likelihood, or

log-likelihood, that is

LðθÞ � log PrðDjθÞ ¼ log
YN

i¼1

pi ¼
XN

i¼1

log pi: ð4Þ

The typical rationale for switching to the log-likelihood is that for large N the likelihood tends

to be a vanishingly small quantity, so the logarithm makes it easier to handle numerically
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(‘numerical convenience’). However, we will see later that there are statistically meaningful

reasons to prefer the logarithmic representation (i.e., a sum of independent terms).

Crucially, we assume that the likelihood function is unavailable in a tractable form—for

example, because the model is too complex to derive an analytical expression for the likeli-

hood. Instead, IBS provides a technique for estimating Eq 4 via simulation.

The generative model or simulator. While we assume no availability of an explicit repre-

sentation of the likelihood function, we assume that the model of interest is represented implic-
itly by a stochastic generative model (or ‘simulator’). In the most general case, the simulator is

a stochastic function g that takes as input the current stimulus si, arrays of past stimuli and

responses, and a parameter vector θ, and outputs a discrete response ri, conditional on all past

events,

ri � gðs1; . . . ; si; r1; . . . ; ri� 1; θÞ: ð5Þ

As mentioned in the previous section, a common assumption for a model is that the response

in the current trial only depends on the current stimulus and parameter vector, in which case

r � gðs; θÞ: ð6Þ

For example, the model g(�) could be simulating the responses of a human participant in a

complex cognitive task; the (discrete) choices taken by a rodent in a perceptual decision-mak-

ing experiment; or the spike count of a neuron in sensory cortex for a specific time bin after a

stimulus presentation.

We list now the requirements that the simulator model needs to satisfy to be used in con-

juction with IBS.

• Discrete response space. Lacking an expression for the likelihood function, the only way to

estimate the likelihood or any function thereof is by drawing samples r� g(si, . . .; θ) on each

trial, and matching them to the response ri. This approach requires that there is a nonzero

probability for a random sample r to match ri, hence the assumption that the space of

responses is discrete. We will see in the Discussion a possible method to extend IBS to larger

or continuous response spaces.

• Conditional simulation. An important requirement of the generative model, stated implicitly

by Eqs 5 and 6, is that the simulator should afford conditional simulation, in that we can sim-

ulate the response ri for any trial i, given the current stimulus si, and possibly previous sti-

muli and responses. Note that this class of models, while large, does not include all possible

simulators, in that some simulators might not afford conditional generation of responses.

For example, models with latent dynamics might be able to generate a full sequence of

responses given the stimuli, but it might not be easy or computationally tractable to generate

the response in a given trial, conditional on a specific sequence of previous responses.

• Computational cost. Finally, for the purpose of some of our analyses we assume that drawing

a sample from the generative model is at least moderately computationally expensive, which

limits the approximate budget of samples one is willing to use for each likelihood evaluation

(in our analyses, up to about a hundred, on average, per likelihood evaluation). Number of

samples is a reasonable proxy for any realistic resource expenditure since most costs (e.g.,

time, energy, number of processors) would be approximately proportional to it. Therefore,

we also require that every response value in the data has a non-negligible probability of

being sampled from the model—given the available budget of samples one can reasonably

draw. In this paper, we will focus on the low-sample regime, since that is where IBS consider-

ably outperforms other approaches.
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For our analyses of performance of the algorithm, we also assume that the computational cost

is independent of the stimulus, response or model parameters, but this is not a requirement of

the method.

Reduction to Bernoulli sampling. Given the conditional independence structure codified

by Eq 3, to estimate the log-likelihood of the entire data set, we cannot do better than estimat-

ing pi on each trial independently, and combining the results. However, combining estimates

p̂i into a well-behaved estimate of
QN
i¼1
pi is non-trivial (see “Why not an unbiased estimator of

the likelihood?”). Instead, it is easier to estimate Li � log pi for each trial and calculate the log-

likelihood

LðθÞ ¼ log PrðDjθÞ ¼
XN

i¼1

log pi ¼
XN

i¼1

Li: ð7Þ

We can estimate this log-likelihood by simply summing estimates L̂ i across trials, in which

case the central limit theorem guarantees that the distribution of L̂ðθÞ is normally distributed

for large values of N, which is true for typical values of N of the order of a hundred or more

(see later).

We can make one additional simplification, without loss of generality. The generative

model specifies an implicit probability distribution ri� g(si, . . .; θ) for each trial. However, to

estimate the log-likelihood, we do not need to know the full distribution, only the probability

for a random sample r from the model to match the observed response ri. Therefore, we can

convert each sample r to

x ¼

(
1 if r ¼ ri ð‘hit’Þ

0 otherwise ð‘miss’Þ;
ð8Þ

and lose no information relevant for estimating the log-likelihood. By construction, x follows a

Bernoulli distribution with probability pi. Note that this holds regardless of the type of data,

the structure of the generative model or the model parameters. The only difference between

different models and data sets is the distribution of the likelihood pi across trials. Moreover,

since pi is interpreted as the parameter of a Bernoulli distribution, we can apply standard fre-

quentist or Bayesian statistical reasoning to it.

In conclusion, we can reduce the problem of estimating the log-likelihood of a given model

by sampling to a smaller problem: given a method to draw samples (x1, x2, . . .) from a Ber-

noulli distribution with unknown parameter p, estimate log p as precisely and accurately as

possible using on average as few samples as possible.

Sampling policies and estimators. A sampling policy is a function that, given a sequence

of samples x� (x1, x2, . . ., xk), decides whether to draw an additional sample or not [20]. In

this work, we compare two sampling policies:

1. The commonly used fixed policy: Draw a fixed number of samplesM, then stop.

2. The inverse binomial sampling policy: Keep drawing samples until xk = 1, then stop.

In our case, an estimator (of log p) is a function L̂ðxÞ that takes as input a sequence of sam-

ples x = (x1, x2, . . ., xk) and returns an estimate of log p. We recall that the bias of an estimator

L̂ of log p, for a given true value of the Bernoulli parameter p, is defined as

Bias½L̂jp� ¼ E½L̂� � log p; ð9Þ

where the expectation is taken over all possible sequences x generated by the chosen sampling

PLOS COMPUTATIONAL BIOLOGY Unbiased and efficient log-likelihood estimation with IBS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008483 December 23, 2020 7 / 32

https://doi.org/10.1371/journal.pcbi.1008483


policy under the Bernoulli probability p. Such estimator is (uniformly) unbiased if

Bias½L̂jp� ¼ 0 for all 0< p� 1 (that is, the estimator is centered around the true value).

• Fixed sampling. For the fixed sampling policy, since all samples are independent and identi-

cally distributed, a sufficient statistic for estimating p from the samples (x1, x2, . . ., xM) is the

number of ‘hits’,mðxÞ �
XM

k¼1

xk. The most obvious estimator for an obtained sequence of

samples x is then

L̂naiveðxÞ ¼ log
mðxÞ
M

� �

; ð10Þ

but this estimator has infinite bias; since as long as p 6¼ 1, there is always a nonzero chance

thatm(x) = 0, in which case L̂naiveðxÞ ¼ � 1 (and thus E½L̂naive� ¼ � 1). This divergence

can be fixed in multiple ways; in the main text we use

L̂fixedðxÞ ¼ log
mðxÞ þ 1

M þ 1

� �

: ð11Þ

Note that any estimator based on the fixed sampling policy will always produce biased esti-

mates of log p, as guaranteed by the reasoning in the following section. As an empirical vali-

dation, we show in S1 Appendix B.1 that our results do not depend on the specific choice of

estimator for fixed sampling (Eq 11).

• Inverse binomial sampling. For inverse binomial sampling we note that, since x is a binary

variable, the policy will always result in a sequence of samples of the form

x ¼ ð0; 0; 0; 0; 0; . . . ; 0; 1
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

K

Þ;
ð12Þ

where the length of the sequence is a stochastic variable, which we label K (a positive inte-

ger). Moreover, since each sample is independent and a ‘hit’ with probability p, the length K
follows a geometric distribution with parameter 1 − p,

PrðK ¼ kÞ ¼ pð1 � pÞk� 1
: ð13Þ

We convert a value of K into an estimate for log p using the IBS estimator,

L̂IBSðxÞ ¼

(
0 for K ¼ 1

�
PK� 1

k¼1
1

k for K > 1:
ð14Þ

Crucially, Eq 14 combined with the IBS policy provides a uniformly unbiased estimator of

log p [18]. Moreover, we can show that L̂IBS is the uniformly minimum-variance unbiased
estimator of log p under the IBS policy. For a full derivation of the properties of the IBS esti-

mator, we refer to S1 Appendix A.1. Eq 14 can be written compactly as

L̂IBSðKÞ ¼ cð1Þ � cðKÞ, where ψ(z) is the digamma function [23].

We now provide an understanding of why fixed sampling is not a good policy, despite its

intuitive appeal, and then show why IBS solves many of the problems with fixed sampling.
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Why fixed sampling fails

We summarize in Fig 1 the properties of the IBS estimator and of fixed sampling, for different

number of samplesM, as a function of the trial likelihood p. In particular, we plot the expected

number of samples, the bias, and the standard deviation of the estimators.

The critical disadvantage of the fixed sampling policy withM samples is that its estimates

of the log-likelihood are inevitably biased (see Fig 1B). Fixed sampling is ‘inevitably’ biased

because the bias decreases as one takes more samples, but for p! 0, the estimator remains

biased. More precisely, in a joint limit whereM!1, p! 0 and pM! λ for some constant λ,

the bias collapses onto a single ‘master curve’ (see Fig 2; and S1 Appendix A.2 for the deriva-

tion). In particular, we observe that the bias is close to zero for λ� 1 and that it diverges when

λ� 1, or equivalently, forM � 1

p andM � 1

p, respectively.

To convey the intuition for why the bias diverges for small probabilities, we provide a gam-

bling analogy. Imagine playing a slot machine and losing the first 100 bets you make. You can

now deduce that this slot machine likely has a win rate less than 1%, but there is no way of

knowing whether it is 1%, 0.1%, 0.01% or even 0% apart from any prior beliefs you may

have (for example, you expect that the house has stacked the odds in their favor but not

Fig 1. Properties of estimators. A. Number of samples used by fixed (red curves) or inverse binomial sampling (blue;

expected value) to estimate the log-likelihood log p on a single trial with probability p. IBS uses on average 1

p trials. B.

Bias of the log-likelihood estimate. The bias of IBS is identically zero. C. Standard deviation of the log-likelihood

estimate.

https://doi.org/10.1371/journal.pcbi.1008483.g001

Fig 2. Asymptotic properties of fixed sampling. A. Bias of fixed sampling estimators of the log-likelihood, plotted as

a function of pM, where p is the likelihood on a given trial, andM the number of samples. AsM!1, the bias

converges to a master curve (Eq S3 in S1 Appendix). B. Same, but for standard deviation of the estimate.

https://doi.org/10.1371/journal.pcbi.1008483.g002
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overwhelmingly so). In practice, this uncertainty is unlikely to affect your decision whether to

continue playing the slot machine, since the expected value of the slot machine depends line-

arly on its win rate. However, if your goal is to estimate the logarithm of the win rate, the differ-

ence between these percentages becomes infinitely large as the true win rate tends to 0. We

provide a more formal treatment of the bias of fixed sampling in S1 Appendix A2.

Why fixed sampling cannot be fixed. The asymptotic analyses above suggest an obvious

solution to prevent fixed sampling estimators from becoming strongly biased: make sure to

draw enough samples so thatM � maxi¼1...N
1

pi
. Although this solution will succeed in theory,

it has practical issues. First of all, choosingM requires knowledge of pi on each trial, which is

equivalent to the problem we set out the solve in the first place. Moreover, even if one can

derive or estimate an upper bound on 1

pi
(for example, in behavioral models that include a lapse

rate, that is a nonzero probability of giving a uniformly random response), fixed sampling will

be inefficient. As shown in Fig 2, the bias in L̂fixed is small when λ� 1 orM � 1

p and increasing

M even further has diminishing returns, at least for the purpose of reducing bias. If we choose

M inversely proportional to the probability pi on the trial where the model is least likely to

match the observed response, we will draw many more samples than necessary for all other

trials.

One might hope that in practice the likelihood pi is approximately the same across trials,

but the opposite is true. As an example, take a typical ‘orientation discrimination’ psycho-

physical task in which a participant has to detect whether a presented oriented grating is

tilted clockwise or anti-clockwise from vertical, and consider a generative model for the

observer’s responses that includes sensory measurement noise and lapses (see Results for

details). Moreover, imagine that the experiment contains� 500 trials, and the participant’s

true lapse rate is 1%. The model will always assign more probability to correct responses

than errors, so, for all correct trials, pi will be at least 0.5. However, there will likely be a hand-

ful of trials where the participant lapses and makes a grave error (responding incorrectly to a

stimulus very far from the decision boundary), in which case pi will be 0.5 times the lapse

rate. This hypothetical scenario is not exceptional, in fact it is almost inevitable in any experi-

ment where participants occasionally make unpredictable responses, and perform hundreds

or more trials.

A more sophisticated solution would relax the assumption thatM needs to be constant for

all trials, and instead chooseM as a function of pi on each trial. However, since pi is unknown,

one would need to first estimate pi by sampling, chooseMi for each trial, then re-estimate Li.
Such an iterative procedure would create a non-fixed sampling scheme, in whichMi adapts to

pi on each trial. This approach is promising, and it is, in fact, how we originally arrived at the

idea of using inverse binomial sampling for log-likelihood estimation, while working on the

complex cognitive model described in the Results.

Finally, a heuristic solution would be to disregard any statistical concerns, pickM based on

some intuition or from similar studies in the literature, and hope that the bias turns out to be

negligible. We do not intend to dissuade researchers from using such pragmatic approaches if

they work in practice. Unfortunately, this one does not. As Fig 2 shows, estimating log-likeli-

hoods with fixed sampling can cause biases of 1 or more points of model evidence if the data

set contains even a single trial on which pi � 1

2M. Since differences in log-likelihoods larger

than 5 to 10 points are often regarded as strong evidence for one model over another [24–26],

it is well possible for such biases to reverse the outcome of a model comparison analysis. This

point bears repeating; if one uses fixed sampling to estimate log-likelihoods and the number of

samples is too low, one risks of drawing conclusions about scientific hypotheses that are not

supported by the experimental data one has collected.
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Why not an unbiased estimator of the likelihood? In this paper, we focus on finding an

unbiased estimator of the log-likelihood, but one might wonder why we do not look instead

for an unbiased estimator of the likelihood. In fact, we already have such an estimator. Fixed

sampling provides an unbiased estimate of pi for each trial, and since all estimates are unbiased

and statistically independent, ∏i pi is also unbiased.

The critical issue is the shape of the distribution of these estimates. While a central limit the-

orem for products of random variables exists, it only holds if all the estimates are almost surely

not zero. For estimates of pi obtained via fixed sampling, this is not the case, and we would not

obtain a well-behaved (i.e., log-normal) distribution of ∏i pi. In fact, the distribution would be

highly multimodal with the main peak being at ∏i pi = 0. This property makes this estimator

unusable for all practical purposes (e.g., from maximum-likelihood estimation to Bayesian

inference).

Instead, by switching to log-likelihood estimation, we can find an estimator (IBS) which is

both unbiased and whose estimates are guaranteed to be well-behaved (in particular, normally

distributed). We stress that normality is not just a desirable addition, but a fundamental fea-

ture with substantial practical consequences for how estimators are used, as we will see more

in detail in the following section.

Is inverse binomial sampling really better?

While one could expect that the unbiasedness of the IBS estimator would come at a cost, such

as more samples, a much higher variance, or perhaps a particularly complex implementation,

we show here that IBS is not only unbiased, but it is sample-efficient, its estimates are low-vari-

ance, and can be implemented in a few lines of code.

Implementation. We present in Table 1 a description in pseudo-code of the basic IBS

algorithm to estimate the log-likelihood of a given parameter vector θ for a given data set and

generative model. The procedure is based on the inverse binomial sampling scheme intro-

duced previously, generalized sequentially to multiple trials.

For each trial, we draw sampled responses from the generative model, given the stimulus si
in that trial, using the subroutine sample_from_model, until one matches the observed

response ri. This yields a value of Ki on each trial i, which IBS converts to an estimate L̂i
(where we use the convention that a sum with zero terms equals 0). We make our way sequen-

tially across all trials, returning then the summed log-likelihood estimate L̂IBS for the entire

data set.

Table 1. Inverse binomial sampling algorithm.

Input: Stimuli fsig
N
i¼1

, responses frig
N
i¼1

, generative model M, parameters θ

1: for i 1 . . . N do ⊳ Sequential loop over all trials

2: Ki 1

3: while sample_from_model(M, θ, si) 6¼ ri do

4: Ki Ki + 1

5: L̂ i  �
XKi � 1

k¼1

1

k
⊳ IBS estimator from Eq 14

6: return
XN

i¼1

L̂ i ⊳ Return total log-likelihood estimate

Basic sequential implementation of the IBS estimator.

https://doi.org/10.1371/journal.pcbi.1008483.t001
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In practice, depending on the programming language of choice, it might be useful to take

advantage of numerical features such as vectorization to speed up computations. An alterna-

tive ‘parallel’ implementation of IBS is described in S1 Appendix.

One might wonder how to choose the θ to evaluate in the algorithm in Table 1 in the first

place. IBS is agnostic of how candidate θ are proposed. Most often, the function that imple-

ments the IBS algorithm will be passed to a chosen optimization or inference algorithm, and

the job of proposing θ will be taken care of by the chosen method. For maximum-likelihood

estimation, we recommend derivative-free optimization methods that deal effectively and

robustly with noisy evaluations, such as Bayesian Adaptive Direct Search (BADS; [27]) or

noise-robust CMA-ES [28, 29]. At the end of optimization, most methods will then return a

candidate solution θ̂MLE and possibly an estimate of the value of the target function at θ̂MLE.

However, since the target function is noisy and the final estimate is biased (because, by defini-

tion, it is better than the other evaluated locations), we recommend to re-estimate L̂IBSðθ̂MLEÞ

multiple times to obtain a higher-precision, unbiased estimate of the log-likelihood at θ̂MLE

(see also later, “Iterative multi-fidelity”).

Implementations of IBS in different programming languages can be found at the following

web page: https://github.com/lacerbi/ibs.

Computational time. The number of samples that IBS takes on a trial with probability pi
is geometrically distributed with mean 1

pi
. We saw earlier that for fixed-sampling estimators to

be approximately unbiased, one needs at least 1

pi
samples, and IBS does exactly that in expecta-

tion. Moreover, since IBS adapts the number of samples it takes on different trials, it will be

considerably more sample-efficient than fixed sampling with constantM across trials. For

example, in the aforementioned example of the orientation discrimination task, when most tri-

als have a likelihood pi� 0.5, IBS will often take just 1 or 2 samples on those trials. Therefore,

it will allocate most of its samples and computational time on trials where pi is low and those

samples are needed.

Variance. The variance of the IBS estimator can be derived as

Var L̂IBS

h i
¼
X1

k¼1

1

k2
ð1 � pÞk ¼ Li2ð1 � pÞ; ð15Þ

where we introduced the dilogarithm or Spence’s function Li2(z) [30]. The variance (plotted in

Fig 1C as standard deviation) increases when p! 0, but it does not diverge; instead, it con-

verges to p2

6
. Therefore, IBS is not only uniformly unbiased, but its variance is uniformly

bounded. The full derivation of Eq 15 is reported in S1 Appendix A.3.

We already mentioned that L̂IBS is the minimum-variance unbiased estimator of log p given

the inverse binomial sampling policy, but it also comes close (less than� 30% distance) to satu-

rating the information inequality, which specifies the minimum variance that can be theoreti-

cally achieved by any estimator under a non-fixed sampling policy (an analogue of the

Cramer-Ráo bound [18]). We note that fixed sampling eventually saturates the information

inequality in the limitM!1, but as mentioned in the previous section, the fixed-sampling

approach can be highly wasteful or substantially biased (or both), not knowing a priori how

largeM has to be across trials. See S1 Appendix A.4 for a full discussion of the information

inequality and comparison between estimators.

Eq 15 has theoretical relevance, but requires us to know the true value of the likelihood p,
which is unknown in practice. Instead, we define the estimator of the variance of a specific IBS
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estimate, having sampled for K times until a ‘hit’, as

Var½L̂IBSjK� ¼ c1ð1Þ � c1ðKÞ; ð16Þ

where ψ1(z) is the trigamma function, the derivative of the digamma function [23]. We derived

Eq 16 from a Bayesian interpretation of the IBS estimator, which can be found in S1 Appendix

A.5. Note that Eqs 15 and 16 correspond to slightly different concepts, in that the former rep-

resents the variance of the estimator for a known p (from a frequentist point of view), while

the latter is the posterior variance of L for a known K (for which there is no frequentist ana-

logue). See also later “Higher-order moments” for further discussion.

Iterative multi-fidelity. We define amulti-fidelity estimator as an estimator with a tun-

able parameter that affords different degrees of precision at different computational costs (i.e.,

from a cheaper, inaccurate estimate to a very accurate but expensive one), borrowing the term

from the literature on computer simulations and surrogate models [31, 32]. IBS provides a par-

ticularly convenient way to construct an iterativemulti-fidelity estimator in that we can per-

form R independent ‘repeats’ of the IBS estimate at θ, and combine them by averaging,

L̂IBS� RðθÞ ¼
1

R

XR

r¼1

L̂ðrÞIBSðθÞ

Var½L̂IBS� RðθÞ� ¼
1

R2

XR

r¼1

Var L̂ðrÞIBSðθÞ
h i

;

ð17Þ

where L̂ðrÞIBS denotes the r-th independent estimate obtained via IBS. For R = 1, we recover the

standard (‘1-rep’) IBS estimator. The variances in Eq 17 are computed empirically using the

estimator in Eq 16.

Importantly, we do not need to perform all R repeats at the same time, but we can iteratively

refine our estimates whenever needed, and only need to store the current estimate, its variance

and the number of repeats performed so far:

L̂IBS� Rþ1ðθÞ ¼
1

Rþ 1
R � L̂IBS� RðθÞ þ L̂ðrþ1Þ

IBS ðθÞ
h i

Var½L̂IBS� Rþ1ðθÞ� ¼
1

ðRþ 1Þ
2
fR2 � Var L̂IBS� RðθÞ

h i
þ Var L̂ðrþ1Þ

IBS ðθÞ
h i

g:

ð18Þ

Crucially, while a similar procedure could be performed with any estimator (including fixed

sampling), the fact that IBS is unbiased and its variance is bounded ensures that the combined

iterative estimator is also unbiased and eventually converges to the true value for R!1, with

variance bounded above by p2

6R.

Finally, we note that the iterative multi-fidelity approach described in this section can be

extended such that, instead of having the same number of repeats R for all trials, one could

adaptively allocate a different number of repeats ri to each trial so as to minimize the overall

variance of the estimated log-likelihood (see S1 Appendix C.2).

Bias or variance? In the previous sections, we have seen that IBS is always unbiased,

whereas fixed sampling can be highly biased when using too few samples. However, with the

right choice ofM, fixed sampling can have lower variance. We now list several practical and

theoretical arguments for why bias can have a larger negative impact than variance, and being

unbiased is a desirable property for an estimator of the log-likelihood.
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1. To use IBS or fixed sampling to estimate the log-likelihood of a given data set, we sum esti-

mates of Li across trials. Being the sum of independent random variables, as N!1, the

standard deviation of L̂ðθÞ will grow proportional to
ffiffiffiffi
N
p

, whereas the bias grows linearly

with N. For a concrete example, see S1 Appendix A.6.

2. When using the log-likelihood (or a derived metric) for model selection, it is common to

collect evidence for a model, possibly hierarchically, across multiple datasets (e.g., different

participants in a behavioral experiment), which provides a second level of averaging that

can reduce variance but not bias.

3. Besides model selection, the other key reason to estimate log-likelihoods is to infer parame-

ters of a model, for example via maximum-likelihood estimation. For this purpose, one

would use an optimization algorithm that calls the routine that estimates L̂ðθÞmany times

with different candidate values of θ, and uses this information to estimate the value that

maximizes LðθÞ. Powerful, sample-efficient optimization algorithms, such as those based

on Bayesian optimization, work by building a statistical approximation (a surrogate) of the

objective function [27, 33–35], most commonly via Gaussian processes [36]. These methods

can operate successfully with noisy objectives by effectively averaging function values from

nearby parameter vectors. By contrast, no optimization algorithm can handle bias. This

argument is not limited to maximum-likelihood estimation, as recent methods have been

proposed to use Gaussian process surrogates to perform (approximate) Bayesian inference

and infer posterior distributions [37–40]; also these techniques can handle variance in the

estimates but not bias.

4. The ability to combine unbiased estimates of known variance iteratively (as described in the

previous section) is particularly useful with adaptive fitting methods based on Gaussian

processes, whose algorithmic cost grows super-linearly in the number of distinct training

points [36]. Thanks to iterative multi-fidelity estimation, these methods would have the

opportunity to refine their estimates of the log-likelihood at a previously evaluated point,

whenever deemed useful, without incurring an increased algorithmic cost.

5. On a conceptual level, bias is potentially more dangerous than variance. Bias can cause

researchers to confidently draw false conclusions, variance, when properly accounted for,

causes decreased statistical power and lack of confidence. Appropriate statistical tools can

account for variance and explain seemingly conflicting findings resulting from underpow-

ered studies [41], whereas bias is much harder to recognize or correct no matter what statis-

tical techniques one uses.

Finally, while for the sake of argument we structured this section as an opposition between

bias and variance, it is not an exact dichotomy and both properties matter, together with

other considerations (see S1 Appendix A.6). For example, there are situations in which the

researcher may knowingly decide to increase bias to reduce both variance and computational

costs. Notably, while this trade-off is easy to achieve with the IBS estimator (see S1 Appendix

C.1), there is no similarly easy technique to de-bias a biased estimator.

Higher-order moments. So far, we have considered the mean (or bias) and variance of

L̂fixed and L̂IBS in detail, but ignored any higher-order moments. This is justified since to esti-

mate the log-likelihood of a model with a given parameter vector we will sum these estimates

across many trials. Therefore, the central limit theorem guarantees that the distribution of

LðθÞ is Gaussian with mean and variance determined by the mean and variance of L̂fixed or

L̂IBS on each trial, at least as long as the distribution of pi across trials satisfies a regularity
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condition (specifically, the Lindeberg [42] or Lyapunov conditions [43, Chapter 7.3], both of

which place restrictions on the degree to which the variance of any single trial can dominate

the distribution of
P

iL̂ i). A sufficient but far from necessary condition is that there exists a

lower bound on pi, which is the case for example for a behavioral model with a lapse rate.

Using the same argument, the total number of samples Ktot that IBS uses to estimate LðyÞ is

also approximately Gaussian.

In the following, we demonstrate empirically that the distributions of the number of sam-

ples taken by IBS and of the estimates L̂IBS are Gaussian. Importantly, we also show that the

estimate of the variance from Eq 16, V̂ IBS, is calibrated. That is, we expect the fraction of esti-

mates within the credible interval L̂IBS � b

ffiffiffiffiffiffiffiffiffi

V̂ IBS

q

to be (approximately) F(β) − F(−β), where

F(x) is the cumulative normal distribution function and β> 0.

As a realistic scenario, we consider the psychometric function model described in the

Results. For each simulated data set, we estimated the log-likelihood under the true data-gen-

erating parameters θtrue (see S1 Appendix B.1 for details). Specifically, for each data set we ran

IBS and recorded the estimated log-likelihood L̂IBS, the total number of samples Ktot taken,

and a Bayesian estimate for the variance of L̂IBS from Eq 16. For the total number of samples

Ktot and the L̂IBS estimate, we can compute the theoretical mean and variance by knowing the

trial likelihoods pi, which we can evaluate exactly in this example.

For each obtained Ktot, we computed a z-score by subtracting the exact mean and dividing

by the exact standard deviation, obtained by knowing the mean and variance of geometric ran-

dom variables underlying the samples taken in each trial. If Ktot is normally distributed, we

expect that the variable z across data sets should appear to be distributed as a standard normal,

z � N ð0; 1Þ. If Ktot is not normally distributed, we should see deviations from normality in

the distribution of z, especially in the tails. By comparing the histogram of z-scores with a stan-

dard normal in Fig 3A, we see that the total number of samples is approximately normal, with

some residual skew.

We did the same analysis for the estimate L̂IBS, using the z-scored variable

z �
L̂IBS � Ltrueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½L̂IBS�

q ; ð19Þ

Fig 3. Normality of the IBS estimator. A.z-score plot for the total number of samples used by IBS. B.z-score plot for

the estimates returned by IBS, using the exact variance formula for known probability. C. Calibration plot for the

estimates returned by IBS, using the variance estimate from Eq 16. These figures show that the number of samples

taken by IBS and the estimated log-likelihood are (approximately) Gaussian, and that the variance estimate from Eq 16

is calibrated.

https://doi.org/10.1371/journal.pcbi.1008483.g003
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where here Var½L̂IBS� is the exact variance of the estimator computed via Eq 15. The histogram

of z-scores in Fig 3B is again very close to a standard normal.

Finally, in practical scenarios we do not know the true likelihoods, so the key question is

whether we can obtain valid estimates of the variance of L̂IBS via Eq 16. If such an estimate is

correctly calibrated, the distribution of z-scores should remain approximately Gaussian if we

use Eq 16 for the denominator of Eq 19. Indeed, the calibration plot in Fig 3C shows an excel-

lent match with a standard normal, confirming that our proposed estimator of the variance is

well calibrated.

Results

In this section, we examine the performance of IBS and fixed sampling on several realistic

model-fitting problems of increasing complexity. The example problems we consider here

model tasks drawn from psychophysics and cognitive science: an Orientation discrimination

experiment; a Change localization task; and playing a Four-in-a-row game that involves com-

plex sequential decision making. For the first problem, we can derive the exact analytical

expression for the log-likelihood; for the second problem, we have an integral expression for

the log-likelihood that we can approximate numerically; and finally, for the third problem, we

are in the true scenario in which the log-likelihood is intractable.

The rationale for our numerical experiments is that so far we have analyzed fixed sampling

and IBS in terms of the bias in their log-likelihood estimates for individual parameter vectors.

However, these log-likelihood estimators are often used as elements of a more complex statisti-

cal procedure, such as maximum-likelihood estimation. It is plausible that biases in log-likeli-

hood estimates will lead to biases in parameter estimates obtained by maximizing the log-

likelihood, but the exact relationship between those biases, and the role of variance in optimi-

zation is not immediate. Similarly, it is unclear how bias and variance of individual log-likeli-

hood estimates will affect the estimate of themaximum log-likelihood, often used for model

selection (e.g., unbiased estimates of the log-likelihood do not guarantee an error-free estimate

of the maximum log-likelihood, which is affected by other factors; see later “Log-likelihood

loss”). Therefore, we conduct an empirical study showing that, in practice, IBS leads to more

accurate parameter and maximum log-likelihood estimates than fixed sampling, given the

same budget of computational resources.

First, we describe the procedure used to perform our numerical experiments. Code to run

all our numerical experiments and analyses is available at the following link: https://github.

com/basvanopheusden/ibs-development.

Procedure

For each problem, we simulate data from the generative model given different known settings

θtrue of model parameters, and we compare the accuracy (and other statistics) of both IBS and

fixed sampling in recovering the true data-generating parameters through maximum-likeli-

hood estimation. Since these methods provide noisy and possibly biased estimates of LðθÞ,
and due to variability in the simulated datasets, the estimates θ̂MLE that result from optimizing

the log-likelihood will also be noisy and possibly biased. To explore performance in a variety

of settings, and to account for variability in the data-generation process, for each problem

we consider 40 � D different parameter settings, where D is the number of model parameters

(that is, the dimension of θ), and for each parameter setting we generate 100 distinct synthetic

datasets.
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For each dataset, we compare fixed sampling with different numbers of samplesM (from

M = 1 toM = 50 orM = 100, depending on the problem), and IBS with different number of

‘repeats’ R, as defined in the Methods (from R = 1 to up to R = 50, depending on the problem).

In each scenario, we directly compare the two methods in terms of number of samples by com-

puting the average number of samples used by IBS for a given number of repeats R. To prevent

IBS from ‘hanging’ on particularly bad parameter vectors, we adopt the ‘early stopping thresh-

old’ technique described in S1 Appendix C.1. Finally, if available, we also test the performance

of maximum-likelihood estimation using the ‘exact’ log-likelihood function (calculated either

analytically or via numerical integration).

For all methods, we maximize the log-likelihood with Bayesian Adaptive Direct Search

(BADS [27]; github.com/lacerbi/bads), a hybrid Bayesian optimization algorithm based on the

mesh-adaptive direct search framework [44], which affords a fast, robust exploration of the

function landscape via Gaussian process surrogates. Briefly, BADS works by alternating

between two stages: in the Poll stage, the algorithm evaluates points in a random mesh sur-

rounding the current point, in a fairly model-free way; in the Search stage, following the prin-

ciples of Bayesian optimization [33], the algorithm builds a local Gaussian process model of

the target function, and chooses the next point by taking into account both mean and variance

of the surrogate model, balancing exploration of unknown but promising regions and exploi-

tation of regions known to be high-valued (for maximization). By combining model-free and

powerful model-based search, BADS has been shown to be much more effective than alterna-

tive optimization methods particularly when dealing with stochastic objective functions, and

with a relatively limited budget of a few hundreds to a few thousands function evaluations

[27]. We refer the interested reader to [27] and to the extensive online documentation for fur-

ther information about the algorithm.

Orientation discrimination

The first task we simulate is an orientation discrimination task, in which a participant observes

an oriented patch on a screen, and indicates whether they believe it was rotated leftwards or

rightwards with respect to a reference line (see Fig 4A). Here, on each trial the stimulus s is the

orientation of the patch with respect to the reference (in degrees), and the response r is ‘right-

wards’ or ‘leftwards’.

Fig 4. Orientation discrimination task. A. Trial structure of the simulated task. A oriented patch appears on a screen

for 250 ms, after which participants decide whether it is rotated rightwards or leftwards with respect to a vertical

reference. B. Graphical illustration of the behavioral model, which specifies the probability of choosing rightwards as a

function of the true stimulus orientation. The three model parameters σ, μ, and γ correspond to the (inverse) slope,

horizontal offset and (double) asymptote of the psychometric curve, as per Eq 20. Note that we parametrize the model

with η� log σ.

https://doi.org/10.1371/journal.pcbi.1008483.g004
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For each dataset, we simulated N = 600 trials, drawing on each trial the stimulus s from a

Gaussian distribution with mean 0˚ (the reference) and standard deviation 3˚. The generative

model assumes that the observer makes a noisy measurement x of the stimulus, which is nor-

mally distributed with mean s and standard deviation σ, as per standard signal detection theory

[45]. They then respond ‘rightwards’ if x is larger than μ (a parameter which captures response

bias, or an incorrect memory of the reference line) and ‘leftward’ otherwise. However, a frac-

tion of the time, given by the lapse rate γ 2 (0, 1], the observer guesses randomly. We visually

illustrate the model in Fig 4B. For both theoretical reasons and numerical convenience, we

parametrize the slope σ as η� log σ. Thus, the model has parameter vector θ = (η, μ, γ).

We can derive the likelihood of each trial analytically:

Prð‘rightwards’ responsejs; θÞ ¼
g

2
þ ð1 � gÞF

s � m
s

� �
; ð20Þ

where F(x) is the cumulative normal distribution function. Eq 20 takes the form of a typical

psychometric function [46]. Note that in this section we use Gaussian distributions for circu-

larly distributed variables, which is justified under the assumption that both the stimulus

distribution and the measurement noise are small. For more details about the numerical exper-

iments, see S1 Appendix B.1.

In Fig 5, we show the parameter recovery using fixed sampling, IBS and the exact log-likeli-

hood function from Eq 20. First, we show that IBS can estimate the sensory noise parameter η
and lapse rate γmore accurately than fixed sampling while using on average the same or

fewer samples (Fig 5A and 5D). For visualization purposes, we show here a representative

example with R = 1 or R = 3 repeats of IBS andM = 10 orM = 20 fixed samples (see Fig 6 in S1

Appendix for the plots with all tested values of R andM). As baseline, we also plot the mean

and standard deviation of exact maximum-likelihood estimation, which is imperfect due to

the finite data size (600 trials), and stochasticity and heuristics used in the optimization algo-

rithm. We omit results for estimates of the response bias μ, since even fixed sampling can

match the performance of exact MLE with only 1 sample per trial.

Next, we fix ηtrue� log σtrue = log 2˚, μtrue = 0.1˚, γtrue = 0.1 and plot the mean and standard

deviation of the estimated Ẑ and ĝ across 100 simulated data sets as a function of the (average)

number of samples per trial used by IBS or fixed sampling (Fig 5B and 5E). We find that fixed

sampling is highly sensitive to the number of samples, and with less than 20 samples per trial,

its estimate of η is strongly biased. Estimating γ accurately remains unattainable even with 100

samples per trial. By contrast, IBS estimates η and γ reasonably accurately regardless of the

number of samples per trial. IBS has a slight tendency to underestimate γ, which is a result of

an interaction of the uncertainty handling in BADS with our choice of model parametrization

and parameter bounds. In general, estimating lapse rates is notoriously prone to biases [47].

Finally, we measure the root mean squared error (RMSE) of IBS, fixed sampling and the

exact solution, averaged across all simulated data sets, as a function of number of samples per

trial (Fig 5C and 5F). This analysis confirms the same pattern: fixed sampling makes large

errors in estimating η with fewer than 20 samples, and for γ it requires as many as 100 samples

per trial to become approximately unbiased. IBS outperforms fixed sampling for both parame-

ters and any number of samples, and even with as few as 2 or 3 repeats comes close to match-

ing the RMSE of exact maximum-likelihood inference.

Change localization

The second problem we consider is a typical ‘change localization’ task (see Fig 6A), in which

participants observe a display of 6 oriented patches, and after a short inter-stimulus interval, a

second display of 6 patches [48]. Of these patches, 5 are identical between displays and one
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denoted by c 2 {1, . . ., 6} will have changed orientation. The participant responds by indicating

which patch they believe changed orientation. Here, on each trial the stimulus s is a vector of

12 elements corresponding to a vector of orientations (in degrees) of the six patches in the first

display, concatenated with the vector of orientation of the six patches in the second display.

The response r 2 {1, . . ., 6} is the patch reported by the participant.

For each dataset, we simulated N = 400 trials. On each trial, the patches on the first display

are all independently drawn from a uniform distribution Uniform[0, 360]. For the second dis-

play, we randomly select one of the patches and change its orientation by an amount drawn

from a von Mises distribution centered at 0˚ with concentration parameter κs = 1. A von

Mises distribution is the equivalent of a Gaussian distribution in circular space, and the con-

centration parameter is monotonically related to the precision (inverse variance) of the

Fig 5. Parameter recovery for the orientation discrimination model. A. Estimated values of η� log σ as a function of the true η in simulated data

using IBS with R = 1 repeat (blue), fixed sampling withM = 10 (red) or the exact likelihood function (green). The black line denotes equality. Error bars

indicate standard deviation across 100 simulated data sets. IBS uses on average 2.22 samples per trial. B. Mean and standard error (shaded regions) of

estimates of η for 100 simulated data sets with ηtrue = log 2˚, using fixed sampling, IBS or the exact likelihood function. For fixed sampling and IBS, we

plot mean and standard error as a function of the (average) number of samples used. C. Root mean squared error (RMSE) of estimates of η, averaged

across the range of ηtrue in A, as a function of the number of samples used by IBS or fixed sampling. Shaded regions denote ±1 standard deviation across

the 100 simulated data sets. We also plot the RMSE of exact maximum-likelihood estimation, which is nonzero since we simulated data sets with only

600 trials. D-F Same, for γ (with R = 3,M = 20 in panel D). These results demonstrate that IBS estimates parameters of the model for orientation

discrimination more accurately than fixed sampling using equally many or even fewer samples.

https://doi.org/10.1371/journal.pcbi.1008483.g005
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distribution. Note that, for mathematical convenience (but without loss of generality) we

assume that patch orientations are defined on the whole circle, whereas in fact they are defined

on the half-circle [0˚, 180˚).

The generative model assumes that participants independently measure the orientation of

each patch in both displays. For each patch, the measurement distribution is a von Mises cen-

tered on the true orientation with concentration parameter κ, representing sensory precision.

The participant then selects the patch for which the absolute circular difference of the mea-

surements between the first and second display is largest. This model too includes a lapse

rate γ 2 (0, 1], the probability with which the participant guesses uniformly randomly across

responses.

Since thinking in terms of concentration parameter is not particularly intuitive, we repara-

metrize participants’ sensory noise as Z � log s � � 1

2
log k, since in the limit κ� 1, the von

Mises distribution with concentration parameter κ tends to a Gaussian distribution with stan-

dard deviation s ¼ 1ffiffi
k
p . The model has then two parameters, θ = (η, γ).

We can express the trial likelihood for the change localization model in an integral form

that does not have a known analytical solution (see S1 Appendix B.2 for a derivation). We can,

however, evaluate the integral numerically, which can take a few seconds for a high-precision

likelihood evaluation across all trials in a dataset. The key quantity in the computation of the

trial likelihood is D
ðcÞ
s , the difference in orientation between the changed stimulus at position

c between the first and second display. We plot the probability of a correct response,

PcorrectðD
ðcÞ
s ; θÞ, as a function of D

ðcÞ
s in Fig 6B. As expected, the probability of a correct response

increases monotonically with the amount of change, with the slope being modulated by sen-

sory noise and the asymptote by the lapse rate (but also by the sensory noise, for large noise, as

we will discuss later). For more details about the numerical experiments, see S1 Appendix B.2.

In Fig 7, we compare the performance of IBS, fixed sampling and the ‘exact’ log-likelihood

evaluated through numerical integration. As before, IBS estimates both η and γmore accu-

rately with fewer samples than fixed sampling (Fig 7A and 7D). As an example, we show IBS

with R = 1 repeats and fixed sampling withM = 20 orM = 50; the full results with all tested val-

ues of R andM are reported in Fig 7 in S1 Appendix.

Fig 6. Change localization task. A. Trial structure of the simulated task. While the participant fixates on a cross, 6

oriented patches appear for 250 ms, disappear and the re-appear after a delay. In the second display, one patch will

have changed orientation, in this example the top left. The participant indicates with a mouse click which patch they

believe changed. B. The generative model is fully characterized by the proportion correct as function of model

parameters and circular distance between the orientations of the changed patch in its first and second presentation (see

text). Here we plot this curve for two values of η� log σ. In both curves, γ = 0.2. We can read off η from the slope and γ
from the asymptote.

https://doi.org/10.1371/journal.pcbi.1008483.g006

PLOS COMPUTATIONAL BIOLOGY Unbiased and efficient log-likelihood estimation with IBS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008483 December 23, 2020 20 / 32

https://doi.org/10.1371/journal.pcbi.1008483.g006
https://doi.org/10.1371/journal.pcbi.1008483


Interestingly, maximum-likelihood estimation via the ‘exact’ method provides biased esti-

mates of η when the noise is high. This is because sensory noise and lapse become empirically

non-identifiable for large η, as large noise produces a nearly-flat response distribution, which

is indistinguishable from lapse. For these particular settings of θtrue, due to the interaction

between noisy log-likelihood evaluations and the optimization method, IBS and fixed sam-

pling perform better at recovering η than the ‘exact’ method, but it does not necessarily hold

true in general. Issues of identifiability can be ameliorated by using Bayesian inference instead

of maximum-likelihood estimation [49].

In Fig 7B and 7E, we show the estimates of fixed sampling and IBS for simulated data with

ηtrue� log σtrue = log 17.2˚ and γtrue = 0.1, and find that fixed sampling substantially underesti-

mates η when using less then 50 samples, and underestimates γ even with 100 samples per

trial. By contrast, IBS produces parameter estimates with relatively little bias and standard

deviation close to that of exact maximum-likelihood estimation. Finally, in Fig 7C and 7F we

show that IBS has lower RMSE than fixed sampling for both parameters when compared on

equal terms of number of samples.

Fig 7. Parameter recovery for the change localization model. Same as Fig 5, for the change localization experiment and estimates of η� log σ and γ.

In panel A we show results for R = 1 andM = 20; in panel D, R = 2 andM = 50.

https://doi.org/10.1371/journal.pcbi.1008483.g007
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Four-in-a-row game

The third problem we examine is a complex sequential decision-making task, a variant of tic-

tac-toe in which two players compete to place 4 pieces in a row, column or diagonal on a 4-by-

9 board (see Fig 8A). Previous work showed that people’s decision-making process in this

game can be modeled accurately as heuristic search [14]. A heuristic search algorithm makes a

move in a given board state by searching through a decision tree of move sequences starting at

that board state for a number of moves into the future. To decide which candidate future

moves to include in the tree, the algorithm uses a value function defined as

Vðboard;moveÞ ¼
Xnf

i¼1

wifiðboard;moveÞ þN ð0; s2Þ; ð21Þ

in which fi denotes a set of nf features (i.e., configurations of pieces on the board, such as ‘three

pieces on a row of the same color’; see Fig 8B), wi 2 R the corresponding feature weights, and

σ> 0 is a model parameter which controls value noise. As before, we parameterize the model

with η� log σ.
The interpretation of this value function is that moves which lead to a high value V(board,

move) are given priority in the search algorithm, and the model is more likely to make those

moves. As a heuristic to reduce the search space, any moves for which the value V(board,

move) is less than that of the highest-value move minus a threshold parameter ξ> 0 are pruned
from the tree and never considered as viable options. Finally, when evaluating V(board,

move), the model stochastically omits features from the sum
Xnf

i¼1

wifi; the probability for any

feature to be omitted (or dropped) is independent with probability δ 2 [0, 1] (the drop rate).
Previous work considered various heuristic search models with different feature sets, and esti-

mated the value of feature weights wi as well as the size (number of nodes) of the decision tree

based on human data [14]. Here, we consider a reduced model in which the feature identity fi,
feature weights wi and tree size are fixed (see S1 Appendix B.3 for their values). Thus, the cur-

rent model has three parameters, θ = (η, ξ, δ).

Note that even though the 4-in-a-row task is a sequential game, the heuristic search model

makes an independent choice on each move, with the ‘stimulus’ s on each trial being the cur-

rent board state. Hence, the model satisfies the conditional independence assumptions of Eqs

2 and 6. Note also that, even though the heuristic search algorithm can be specified as a genera-

tive ‘simulator’ which we can query to make moves in any board position, we have no way of

calculating the distribution over its moves, since this would require integrating over all possi-

ble trees it could build, features which may be dropped, and realizations of the value noise.

Fig 8. Four-in-a-row task. A. Example board configuration in the 4-in-a-row task, in which two players alternate

placing pieces (white or black circles) on a 4-by-9 board (gray grid), and the first player to get 4 pieces in a row wins. In

this example, the black player can win by placing a piece on the square on the bottom row, third column. B. Illustration

of features used in the value function of the heuristic search model (Eq 21). For details on the model, see S1 Appendix

B.3 and [14].

https://doi.org/10.1371/journal.pcbi.1008483.g008
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Therefore, we are in the scenario in which log-likelihood estimation is only possible by simula-

tion, and we cannot compare the performance of fixed sampling or IBS to any ‘exact’ method.

To generate synthetic data sets for the 4-in-a-row task, we first compiled a set of 5482 board

positions which occurred in human-versus-human play [14]. For each data set, we then ran-

domly sampled N = 100 board positions without replacement which we used as ‘stimuli’ for

each trial, and sampled a move from the heuristic search algorithm for each position to use as

‘responses’. For more details about the numerical experiments, see S1 Appendix B.3.

In Fig 9, we perform the same tests as before, comparing fixed sampling and IBS, but lack-

ing any ‘exact’ estimation method. Due to the high computational complexity of the model, we

only consider IBS with up to R = 3 repeats, corresponding to� 80 samples. The full results

with all tested values of R andM are reported in Fig 8 in S1 Appendix. As a specific example

for Fig 9B, 9E and 9H we show the estimates of fixed sampling and IBS for simulated data with

ηtrue� log σtrue = log 1, pruning threshold ξtrue = 5 and δtrue = 0.2.

Fixed sampling underestimates the value noise η, even when usingM = 100 samples,

whereas IBS estimates it accurately with 4 times fewer samples (Fig 9A). This bias of fixed sam-

pling gets worse with fewer samples (Fig 9B), and overall, IBS outperforms fixed sampling

when compared on equal terms (Fig 9C). The same holds true for the pruning threshold ξ. IBS

estimates ξ about equally well as fixed sampling, but with about half as many samples (Fig 9D),

fixed sampling is severely biased when using too few samples (Fig 9E) and overall, IBS outper-

forms fixed sampling.

The results are slightly more complicated for the feature drop rate δ. As before, fixed sam-

pling produces strongly biased estimates of δ with up to 35 samples (Fig 9G), and the bias

increases when using fewer samples (Fig 9H). However, for this parameter IBS is also biased,

but towards 0.25 (Fig 9G and 9H), which is the midpoint of the ‘plausible’ upper and lower

bounds used as reference by the optimization algorithm (see S1 Appendix B.3 for details). This

bias can be interpreted as a form of regression towards the mean; likely a by-product of the

optimization algorithm struggling with a low signal-to-noise ratio for this parameter and these

settings (i.e., a nearly flat likelihood landscape for the amount of estimation noise on the log-

likelihood). The negative bias of fixed sampling helps to reduce its variance in the low-δ
regime, and therefore in terms of RMSE, fixed sampling performs similarly to IBS for this

parameter (Fig 9I).

Log-likelihood loss

In the previous sections, we have analyzed the bias and error of different estimation methods

when recovering the generating model parameters in various scenarios. Another important

question, crucial for model selection, is how well different methods are able to recover the true

maximum log-likelihood. The ability to recover the true parameters and the true maximum

log-likelihood are related but distinct properties because, for example, a relatively flat likeli-

hood landscape could yield parameter estimates very far from ground truth, but still afford

recovery of a value of the log-likelihood close to the true maximum. We recall that differences

in log-likelihood much greater than one point are worrisome as they might significantly affect

the outcomes of a model comparison [24–26].

To compute the log-likelihood loss of a method for a given data set, we estimate the differ-

ence between the ‘exact’ log-likelihood evaluated at the ‘true’ maximum-likelihood solution

(as found after multiple optimization runs) and the ‘exact’ log-likelihood of the solution

returned by the multi-start optimization procedure for a given method, as described in the

“Procedure” section. In terms of methods, we consider IBS and fixed-sampling with different

amounts of samples. We perform the analysis for the two scenarios, orientation discrimination
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Fig 9. Parameter recovery for the four-in-a-row model. Same as Figs 5 and 7, for the 4-in-a-row experiment and estimates of the value noise η� log σ,
pruning threshold ξ and feature drop rate δ. In panel A we show results for R = 1 andM = 100; in panel D, R = 1 andM = 50; in panel G, R = 1 and

M = 35.

https://doi.org/10.1371/journal.pcbi.1008483.g009
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and change localization, for which we have access to the exact likelihood, either analytically or

numerically.

The results in Fig 10 show that IBS, even with only a few repeats, is able to return solutions

which are very close to the true maximum-likelihood solution in terms of log-likelihood

(within 1-2 points); whereas fixed sampling remains strongly biased (log-likelihood loss� 1)

even with large number of samples, being thus at risk of inducing wrong inferences in model

selection. Note that our analyses of the loss are based on the ‘exact’ log-likelihood values evalu-

ated at the solution returned by the optimization procedure. In practice, we would not have

access to the ‘exact’ log-likelihood at the solution; but its value can be estimated up to the

desired precision with IBS, by taking multiple repeats at the returned solution.

Finally, the results in Fig 10 also display clearly that, while IBS is unbiased in estimating the

log-likelihood for a given parameter setting θ, the maximum-likelihood procedure per se will

have some error. Due to estimation noise and specific features of the data, model, and stochas-

tic optimization method at hand, the returned solution will rarely be the true maximum-likeli-

hood solution, and thus, by definition, the value of the log-likelihood at the solution will

underestimate the true value of the maximum log-likelihood. Still, Fig 10 shows that the under-

estimation error, at least in the IBS case, tends to be acceptable, as opposed to the large errors

obtained with fixed sampling.

Summary

The results in this section demonstrate that in realistic scenarios, fixed sampling with too

few samples causes substantial biases in parameter and maximum log-likelihood estimates,

whereas inverse binomial sampling is much more accurate and robust to the number of sam-

ples used. Across all 3 models and all parameters, IBS yields parameter estimates with little

bias and RMSE, close to that of ‘exact’ maximum-likelihood estimation, even when using only

a handful of repeats (R between 1 and 5). Conversely, fixed sampling yields substantially biased

parameter estimates when using too few samples per trial, especially for parameters which con-

trol decision noise, such as measurement noise and lapse rates in the two perceptual decision-

making tasks, and value noise in the 4-in-a-row task. Moreover, for the two models for which

we have access to ‘exact’ log-likelihood estimates, we found that IBS is able to recover maxi-

mum-likelihood solutions close to the true maximum log-likelihood, whereas fixed sampling

remains severely biased even for many samples.

Fig 10. Log-likelihood loss. A. Log-likelihood loss with respect to ground truth, as a function of number of samples,

for the orientation discrimination task. Lines are mean ±1 standard deviation (in log space) across 120 generating

parameter values, with 100 simulated datasets each. B. Log-likelihood loss for the change localization task (80

generating parameter values).

https://doi.org/10.1371/journal.pcbi.1008483.g010
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It is true that, given a large enough number of samples, fixed sampling is eventually able to

recover most parameters and maximum log-likelihood values with reasonable accuracy. How-

ever, we have seen empirically that the number of samples required for reliable estimation var-

ies between tasks, models and parameters of interests. For tasks and models where an exact

likelihood or a numerical approximation thereof is unavailable, such as the four-in-a-row

problem we examined in the Results, this limitation renders fixed sampling hardly usable

in practice. By contrast, IBS automatically chooses the number of samples to allocate to the

problem.

Finally, for complex models with a large response space, accurate parameter estimation

with fixed sampling will require many more samples per trial than are feasible given the

computational time needed to generate them. Therefore, in such scenarios accurate and effi-

cient parameter estimation is only possible with IBS.

Discussion

In this work, we presented inverse binomial sampling (IBS), a method for estimating the log-

likelihood of simulation-based models given an experimental data set. We demonstrated that

estimates from IBS are uniformly unbiased, their variance is uniformly bounded, and we intro-

duced a calibrated estimator of the variance. IBS is sample-efficient and, for the purpose of

maximum-likelihood estimation, combines naturally with gradient-free optimization algo-

rithms that handle stochastic objective functions, such as Bayesian Adaptive Direct Search

(BADS [27]). We compared IBS to fixed sampling and showed that the bias inherent in fixed

sampling can cause researchers to draw false conclusions when performing model selection.

Moreover, we showed in three realistic scenarios of increasing complexity that maximum-like-

lihood estimation of model parameters is more accurate with IBS than with fixed sampling

with the same average number of samples.

In the rest of this section, we discuss additional applications of IBS, possible extensions, and

give some practical usage recommendations.

Additional applications

We developed inverse binomial sampling for log-likelihood estimation of models with intrac-

table likelihoods, for the purpose of model comparison or fitting model parameters with maxi-

mum-likelihood estimation, but IBS has other practical uses.

Checking analytical or numerical log-likelihood calculations. We presented IBS as a

solution for when the log-likelihood is intractable to compute analytically or numerically.

However, even for models where the log-likelihood could be specified, deriving it can be

quite involved and time-consuming, and mistakes in the calculation or implementation of the

resulting equations are not uncommon. In this scenario, IBS can be useful for:

• quickly prototyping (testing) of new models, as writing the generative model and fitting it to

the data is usually much quicker than deriving and implementing the exact log-likelihood;

• checking for derivation or implementation mistakes, as one can compare the supposedly
‘exact’ log-likelihood against estimates from IBS (on real or simulated data);

• assessing the quality of numerical approximations used to calculate the log-likelihood, for

example when using methods such as adaptive quadrature for numerical integration [50].

Estimating entropy and other information-theoretic quantities. We can also use

inverse binomial sampling to estimate the entropy of an arbitrary discrete probability
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distribution Pr(x), with x 2 O, a discrete set (see [51] for an introduction to information the-

ory). To do this, we first draw a sample x from the distribution, then use IBS to estimate log

Pr(x). The first sample and the samples in IBS are independent, and therefore we can calculate

the expected value of the outcome of IBS,

E½L̂IBS� ¼ Ex�Prð�Þ½log PrðxÞ� ¼
X

x2O

PrðxÞ log PrðxÞ; ð22Þ

which is the definition of the negative entropy of Pr(x).
We can use this technique to estimate the entropy of the predicted response distribution of

a generative model with a given parameter vector on any trial. For example, such quantity

could be used in a behavioral model to test for the generalized Hick-Hyman law, that states

that reaction time is proportional to the entropy of the available choices [52]. Moreover, we

can generalize the method to estimate the cross-entropy between two distributions (sample

from one, estimate log-likelihood with the other), or the Kullback-Leibler divergence between

distributions. We note that all the estimates of these quantities are also uniformly unbiased.

Incidentally, the lack of bias in entropy estimates by IBS may be surprising in light of a theo-

rem stating that uniformly unbiased estimators of the entropy given a finite set of samples can-

not exist [53]. This theorem does not apply to IBS since its sample size is a stochastic variable.

It does, however, prove that one cannot estimate entropy (or similar information-theoretic

quantities) with fixed sampling.

Bayesian inference

In this paper we focused on maximum-likelihood estimation, but another common approach

to parameter estimation is Bayesian inference [2]. Bayesian inference has the goal of comput-

ing the posterior distribution of the parameters given the observations, computed as

pðθjDÞ ¼
PrðDjθÞpðθÞ

Z
with Z �

Z

PrðDjθÞpðθÞdθ; ð23Þ

where PrðDjθÞ is the likelihood, p(θ) the prior density of the parameters (typically assumed

continuous), and Z the normalization constant, known as the evidence ormarginal likelihood,
a quantity used for Bayesian model selection due to a number of desirable properties [7]. Since

Z is often hard to compute, many (approximate) Bayesian inference techniques are able to cal-

culate the posterior distribution by having access only to the unnormalized posterior, or joint

distribution PrðDjθÞpðθÞ; or equivalently to the log joint LðθÞ þ log pðθÞ. We see then that

IBS could be used to perform Bayesian inference of likelihood-free models by providing a

means to compute the log-likelihood in the log joint distribution (the prior is assumed to be a

simple distribution which we can express in closed form).

In S1 Appendix C.3, we describe how several approaches to approximate Bayesian inference

could be used in conjunction with the unbiased log-likelihood estimates provided by IBS: Mar-

kov Chain Monte Carlo [54, 55]; variational inference [56, 57]; and Gaussian process surrogate

methods [37, 40], including Variational Bayesian Monte Carlo (VBMC [38, 58]). In particular,

[39] demonstrates the effectiveness of IBS, combined with VBMC, for robust and sample-

efficient Bayesian inference, using a variety of models from computational and cognitive

neuroscience.

Finally, note that the techniques in this paper can be easily applied to maximum-a-posteri-

ori (MAP) estimation—which is not quite Bayesian inference, but more like a regularized

form of maximum-likelihood, that still yields a point estimate instead of a full posterior
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distribution. MAP estimation is attained by simply adding the log-prior to the log-likelihood

in the optimization objective, where the log-prior acts as a regularization term.

Approximate IBS for continuous responses

So far, we have assumed that the space of possible responses is discrete. This assumption is

necessary since, for continuous responses, the probability that a sample from the generative

model exactly matches an observed response is zero (technically, near-zero since any computer

implementation of a real number is finite). For this reason, IBS will never terminate, or at least

not within a physically sensible time scale.

A simple approach to make continuous responses discrete is via binning the response

space. Alternatively, we recommend an approach inspired by Approximate Bayesian Compu-

tation (ABC [15]), which we call Approximate IBS (AIBS). Given a metric D(�, �) to measure

distance in response space, and a tolerance threshold ε> 0, we can use IBS to estimate

Lε θð Þ ¼
XN

i¼1

log
PrðDð~r i; riÞ � εjsi; θÞ

jBεðriÞj
; ð24Þ

where the ~r i are responses drawn from the generative model, and |Bε(ri)| denotes the volume

of the set of responses whose distance from ri is no more than ε.

The ε-approximate log-likelihood in Eq 24 can then be used as normal for maximum-likeli-

hood estimation or Bayesian inference. As ε! 0, the approximate likelihood tends to the true

likelihood, under some regularity conditions which we leave to explore for future work (see

[59] for a similar proof for ABC). However, the expected number of samples used by IBS

diverges in that limit, so in practice there is a lower bound for ε that is feasible and one needs

to extrapolate to the ε = 0 limit, or be satisfied to perform inference with an ε-approximate

likelihood.

The common idea between AIBS and ABC is that they both use a distance metric to judge

similarity between simulated samples and data. However, ABC commonly bases the compari-

son on summary statistics of the data (which may not be sufficient statistics, and thus not cap-

ture all aspects of the data); whereas AIBS uses the full responses. Secondly, ABC in practice

requires dedicated algorithms to perform parameter estimation and inference (basic tech-

niques, such as rejection sampling, can be extremely inefficient); whereas AIBS simply pro-

vides a (noisy) log-likelihood, which can then be used in combination with a wider class of

likelihood-based inference methods, as long as they support noisy estimates (see S1 Appendix

C.3 for some examples). We leave a further analysis of AIBS, and a comparison with other like-

lihood-free inference approaches, as a promising direction for future work.

Usage recommendations

We conclude with a number of recommendations for researchers who want to fit a model to a

data set, having access only to a simulator or generative model.

• First, try to derive a closed-form analytic expression for the log-likelihood of the model. If

this is tractable, validate that the log-likelihood is free of implementation mistakes by com-

paring its output against log-likelihood estimates obtained by IBS with well-chosen test trials

and model parameters.

• If exact analytics are intractable, find an analytical or numerical approximation, for example

using variational inference or Riemannian integration, and once again validate the quality of

the approximation using IBS.
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• If the model is too complex for analytical or numerical approximations, estimate the log-

likelihood using inverse binomial sampling.

• Finally, perform inference using the analytical, numerical, or IBS-based log-likelihood func-

tion with a sample-efficient inference algorithm, such as those based on Gaussian process

surrogate modeling. For maximum-likelihood (or maximum-a-posteriori) estimation,

hybrid Bayesian optimization methods have proved to be quite effective [27].

Avoiding infinite loops. One issue of IBS is that it can ‘hang’, in the sense that the imple-

mentation of the estimator can run indefinitely, without returning an answer, if the simulator

is unable to match a particularly unlikely observation. This is a natural behavior of IBS that

stems from its efficiency in allocating samples, as we examined in the “Computational time”

section. We recommend two easy solutions to avoid infinite loops:

• Implement a ‘lapse rate’ γ 2 (0, 1) in the simulator model, which represents the probability

of a completely random response (typically uniform across all possible responses). The lapse

rate could be fixed to a small, non-zero value (e.g., γ = 0.01), or let as a free model parameter;

in which case, ensure that theminimum lapse rate is a small, non-zero value (e.g., γmin =

0.005).

• Introduce an early-stopping threshold, such that IBS stops sampling when the estimated log-

likelihood of the entire data set goes below a threshold Llower (see S1 Appendix C.1).

We implemented both of these solutions in our analyses in the Results.

Supporting information
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